
Implementation of Compressed Point Cloud
Streams in ROS

Vineeth Bandi
University of Texas at Austin

Austin, Texas 78712
Email: vineeth.bandi@utexas.edu

Nalin Mahajan
University of Texas at Austin

Austin, Texas 78712
Email: nalinmahajan@utexas.edu

Abstract—In this paper, we write and test a program that
compresses point cloud data generated in real-time through
integration with Robot Operating System (ROS). By splitting
the data into its composite depth map and RGB image streams,
we are able to separately compress these streams to massively
reduce the amount of space required for storing the original
point cloud data. We then provide a way of recreating the original
point cloud from the depth map and RGB image. This allows for
essentially lossless storage of point cloud data making transport
more efficient and effective.

We found that we could reduce the original file by over 3300%,
in some cases, through our approach. To accomplish this, we
encoded the RGB image stream into a video file using H.264 and
then utilized LZ4 frame compression for the depth map images.
We then uncompressed each RGB and depth image frame by
frame based on timing data and then generated a point cloud in
real-time.

I. INTRODUCTION

Point cloud data is a useful way to represent 3D space or
3D models that can be generated in real time. Point clouds
have been traditionally used for the 3D rendering of objects
in animation or design. The 3D property of point clouds is
especially useful in the field of robotics, providing a cheap and
intuitive way to represent objects in 3D space and generate a
spatial map. It is also finding use in other industries notably,
Augmented Reality. Point clouds tend to produce a large
amount of data making it unfeasible to store or transmit in
bandwidth limited scenarios. In order to overcome this issue,
data compression can be applied. Data compression trades
memory usage for computational resources. Data compression
is the process of encoding a file into a different format
using fewer bits such that the original file’s information is
recoverable. This process is useful for a multitude of reasons
including saving local disk space, transferring large files over
the internet with bandwidth limits, or for meeting size limits
on data uploads. In this paper, we will seek to implement
our own compression algorithm for compressing point cloud
streams in ROS.

A. Lossy versus Lossless Compression

Compression can be lossy or lossless. Lossy compression
algorithms sometimes eliminate data that is deemed unnec-
essary. The original data is unrecoverable as a result of
this compression. Lossless compression, on the other hand,
maintains the integrity of the file such that all of the bits that

were removed can be recovered by a matching decompression
algorithm. Often, lossy algorithms, although failing to preserve
the original data, can have higher compression ratios than
lossless compression and in some scenarios are less computa-
tionally taxing. Both lossy and lossless algorithms have been
implemented successfully as a means to compress point cloud
data. Hence, this paper will seek to compare and implement
lossy and lossless compression data in ROS and evaluate the
viability of lossy compression on point cloud data.

B. The University of Texas Building-Wide Intelligence Project

The University of Texas Building-Wide Intelligence (BWI)
lab uses ROS sensor data to test BWI robots. Point cloud data
can be used to test how a robot would interact with certain
inputs remotely or provide test scenarios for simulations.
However, this type of sensor data is space-intensive. For
example, a rosbag that stored point cloud data generated from
a kinect sensor for less than a minute required approximately
12 gigabytes of space to store. For more advanced scenarios
with multiple sensor streams running for longer periods of
time, this data will grow to an unmanageable size. As a
result research and testing to be conducted in the lab is
hampered, as storage is more likely to fail due to a larger
amount of writes as well as the time it takes to transfer
large files either over network or local storage. In addition,
the representation and real time analysis through RVIZ of
point cloud data can start to become bandwidth constrained,
creating difficulty in visualizing data. For both storing and
transferring these data streams, compression is a solution to
this problem. By reducing the size of sensor data, the BWI
lab can store more data and transfer the data at a faster rate,
which is especially important as more work is being conducted
remotely. Currently, ROS contains some tools for compress-
ing certain types of ROS sensor messages and images, but
it lacks a standardized functionality for compressing point
cloud streams which contributes significantly to the size of
sensor streams. We are hoping that, through this paper, we
can provide a solution and implementation that can help to
streamline the process of compressing point cloud streams
without compromising on testing validity.



II. BACKGROUND

3D point cloud compression algorithms already exist and
are implemented in a variety of ways, both lossy and lossless,
yet there isn’t a true standard for compression. The push for
a standard compression system has been bolstered recently as
point cloud data is being heavily utilized in projects focusing
on Augmented Reality. Traditionally, these implementations
are targeted at computationally weak and memory strained
mobile devices justifying the need for a data compression
standard. The Moving Picture Experts Group (MPEG) has
been leading this push for standardization through MPEG-
3D, their 3D graphics division. Under consideration are 2
algorithms: video-based point cloud compression (V-PCC) and
Geometry-based point cloud compression (G-PCC). V-PCC
is designed for media and utilizes 2D video compression
as a way to compress and then generate point clouds. The
already prevalent use and implementation of 2D video specific
hardware accelerated encoders makes it easily deployable
and already fairly optimized. However, V-PCC can produce
artifacts and mitigation algorithms must also be considered.[1]
G-PCC sidesteps utilizing 2d space directly by describing
points in 3D space. Currently these standards do not imple-
ment prediction tools, but other technologies seek to extend
both of these standards with the use of predictive techniques
utilizing neural networks to filter out and decompress unused
data. This has been attempted using a variety of methods
including the use of recurrent neural networks in Tu et al. [2].
Other external organizations have implemented novel solutions
such as Asymmetric Numeral systems in Google’s Draco
library, 1D traversal compression, projection and mapping onto
2D domains, and direct exploitation of 3D correlations have
been tested using multiple algorithms. [3] These compression
algorithms are often made in mind to compress a fully 3D
point cloud such as 3D model where all sides of the model
are relevant, however, in certain cases there is only one point
of view. This makes comprehensive compression algorithms
more expensive. Currently there is no standardized or widely
popular 2d based compression algorithm for point cloud data
that would be highly advantageous for robots where a point
cloud is generated from one point of view.

III. METHOD

We investigated the compression of point cloud data in
terms of efficiency and performance as they relate to ROS
point cloud data. The point cloud data worked on by the lab
is often generated by a Kinect style device which generates an
RGB image and a depth map in addition to a point cloud. We
wrote a node that subscribes to the rectified RGB image and
depth map sensor data. The ROS Node then utilizes OpenCV’s
VideoWriter class to compress the RGB image using a user
specified encoding such as FFmpeg. Concurrently, the depth
map is compressed using LZ4 frame compression and the
output of both of these is stored locally in two separate files.
Figure 1 shows an abstracted visualization of this process.
We then wrote another node that accepts the two compressed
files and generates the original RGB and depth frame which

is published through ROS. Another node then reconstructs the
point cloud from the given RGB image and depth map. The
node then broadcasts the reconstructed point cloud to a topic.
This simulates rosbag usage where the rosbag is a recording
of selected topics. Then, when ran, it publishes the recorded
data to those same topics allowing users to run simulations
that utilize point cloud data. Figure 2 shows an abstracted
visualization of this process.

Fig. 1. Abstracted sample workflow of our compression node.

A. RGB Image Compression

To handle the compression of the RGB image stream, we
pass our stream frame by frame into an OpenCV VideoWriter
which accepts a file output, a FourCC code specifying the
codec, video frame rate, and video dimensions. The vide-
owriter will then write each frame into a video file with
the specified encoding. This functionality allows us to test
different codecs and their effect on file size. Since some codecs
are lossy, we can also test to see if we can still reconstruct a
point cloud using a lossy compression. The current implemen-
tation allows us to reliably utilize FFmpeg, Huffman, MPEG-4,
H.264 and MJPEG video encoding, newer video codecs such
as H.265 or VP9 are not properly supported in OpenCV’s
VideoWriter class. This implementation is uniquely applied
to RGB image data since most codecs support up to 8 bit,
3 channel image encoding, whereas depth maps that utilize
32 bit encoding are widely unsupported. When recreating the
point cloud, we don’t decompress the video but rather directly
map the frame whether lossy or lossless and publish it to a
topic.

B. Depth Map Compression and LZ4

For compressing the depth map, we use LZ4 frame com-
pression. We cannot use VideoWriter with a relevant encoder
as it does not natively support single precision, single channel,
floating point encoding. LZ4 compression is a form of lossless
compression that works on all file types as it directly encodes
byte streams. LZ4 is in the family of LZ77 compression
algorithms and is focused on fast and low computation decom-
pression. LZ4 in this regard sacrifices compression for speed.



Fig. 2. Abstracted sample workflow of our broadcast node.

This makes LZ4 a great candidate for decompressing data that
must be worked with in real-time or in small time frames.
This is important for decompressing point cloud data as the
depth image and RGB images should match the time that they
were originally broadcast at to prevent synchronization issues.
We are specifically using LZ4 frame compression which is a
form of LZ4 compression that allows the addition of separate
compressed frames of data. The frames are made of a frame
descriptor, data blocks, end mark, and a checksum. The frame
descriptor details the size of the frame and different aspects
of how the frame is to be decompressed. The compressed
data is stored in separate blocks some dependent on each
other. The frame concludes the data blocks with an end mark
allowing for compression and decompression with variable
sizes. The checksum provides a robust check to ensure that
data is compressed or decompressed correctly.[4] The efficient
lossless compression and more impressive speed of this type
of compression along with its frame compression that meshes
well with storing depth map frames made it an ideal way to
compress depth map data. LZ4 compression is implemented
in the node by first subscribing to a depth Image topic and
converting the image into an openCV matrix with type single
precision floating point data. From here the matrix data can
be converted into a byte array and stored into a buffer. An
LZ4 frame is then generated by specifying the number of
bytes to be compressed and placed into an output buffer
which is then written to a file sequentially. This forms an LZ4
compressed file containing multiple frames each representing
the sequential data of an OpenCV image matrix in the form
a byte array. This file can then be read and decompressed by
another node.

C. Synchronization

A side affect of splitting the data into its RGB video and
depth map is that the timing of the data is no longer preserved.
This is important for real time and simulation applications as
the depth map and RGB image need to processed together.
In order to circumvent this problem, we used a ROS Time
Synchronizer which queued up to 5 frames of a data and then
ran a callback once it received an RGB image and depth map
with matching times. The callback would then compress both
the RGB and depth map and wait for the next synced frames to
compress. For decompression, we must also ensure that both
images are published in the same time frame at the same rate.
To do so we specified a ROS rate based on the FPS of our
recorded RGB video. Within this time frame the image would

be decompressed and published and the next image queued
up for publishing at the specified rate. For instance a video
captured at 30 FPS requires that the node be run at a rate of
30 Hz. This means that the RGB image frame and depth map
frame must be decompressed and broadcast within the 1/30
of a second allotted. This is especially important for choosing
a compression algorithms for the depth frames since it must
be able to decompress one frame quickly to meet the required
broadcast rate, hence the use of LZ4.

D. RGB Image and Depth Map Decompression

In order to retrieve the original RGB Image and depth
map we must decompress the data we compressed originally.
The compressed data is specified as two files which are
passed to the decompression node. This node uses an OpenCV
VideoReader to read the encoded video frame by frame while
a file stream is opened with the depth map data in order to read
the file as a byte stream. Based on the synchronizing solution
mentioned earlier we read one frame of the RGB video and
simultaneously decompress one frame of the LZ4 compressed
depth map. LZ4 frame decompression is implemented by
originally reading parts of the file to a byte array since we
do not know the size of each LZ4 frame. Then we can specify
the number of decompressed bytes we most likely need. The
LZ4 frame decompression method then reads in the specified
number of bytes and decompresses it. If the number of bytes
read is not enough to fully decompress one frame the method
will output a guess as to how many bytes more must be read
from the source file. We then repeat this using the guessed
number of bytes until the frame is fully decompressed. From
here we can generate an OpenCV matrix using the byte array
and broadcast it as a depth map alongside the RGB Image.

E. Recreating the Point Cloud

The final step in this process now that we have the published
the depth map and RGB image to their respective topics, is to
publish the generated point cloud. To accomplish this, another
node subscribes to the published decompressed RGB Image,
depth map and user specified camera information topic. The
point cloud node populates an array representing each point
cloud combining the depth of the object computed using the
depth map and overlaying it on the RGB data for that specific
point. The points are then stretched and placed based on the
optical center of the camera and its focal length. Note that in
our implementation the depth map is computed in terms of
millimeters and must be scaled accordingly to meters. After



recreating the point cloud, we have all the relevant pieces
and running our node publishes all the relevant data from the
compressed depth map and RGB video file.

IV. EVALUATION

To evaluate our solution, we compared the total size of the
compressed depth map and compressed RGB image streams
with a rosbag containing only point cloud data. Since all
compression and decompression occurs withing the 30 Hz
window of the sensor stream data, there is no use measuring
compression or decompression time. In addition to comparing
sizes, we sought to see the effect different encoders for RGB
image compression had on the reconstruction of the original
point cloud. As such we tested our source data with five
different encoders including both lossy and lossless encoders.
The encoders used are FFmpeg, MJPEG, Huffman, H.264,
and MPEG-4. For the purposes of depth map compression,
we used LZ4 so that compression and decompression could
be close to real-time and there wouldn’t be a need to wait after
transferring compressed files.

We then compared the compressed file size of the RGB
video and compared it to the original rosbag. We then cal-
culated the compression ratio of each encoder to provide
a standard metric for comparison. We then chose the best
lossless and lossy encoder and evaluated the total compression
ratio compared to our original point cloud rosbag. These
experiments were conducted for two separate rosbags. The
compression ratio is calculated using the formula listed below
and is the average of 3 runs to ensure consistency.

Compression Ratio =
Original File Size

Compressed File Size
(1)

V. RESULTS

The results of different encoders on total RGB image
compression can be seen in Table I. Since we used a variety
of lossy and lossless encoders, some of the results heavily
favor the lossy encoders. All of the encoders were tested
using the same image stream. File size represents the size
of the compressed video file. While we got the best results
from H.264, its important to note that this is a lossy codec.
It is still uncertain whether a lossy compression has an
inadvertent effect on the usage of the reconstructed point
cloud. If the integrity of the color portion of the point cloud
needs to be maintained, a lossless encoder should be used. The
data suggests that, for the purposes of lossless compression,
FFmpeg should be utilized.

TABLE I
RGB IMAGE ENCODERS

Encoding File 1 Size File 2 Size Avg Compression Ratio
None 735.7 MB 281.2 MB 1

Huffman 250.1 MB 79.3 MB 3.2438
FFmpeg 143.6 MB 45.6 MB 5.64498
MJPEG 78.8 MB 25.4 MB 10.2036
MPEG-4 14.6 MB 5.0 MB 53.3152

H.264 3.4 MB 1.2 MB 225.3580

The lossy compression algorithms feature the highest com-
pression ratio’s by a substantial margin, but one thing to
consider is whether the point cloud is still usable for the
purpose that the original would be. At the time of writing, our
tests on this were inconclusive. It also worth considering that
the RGB image is a relatively small portion of the total size
of the original rosbag which means that savings here are not
as significant, making the choice of lossy or lossless encoding
only provide marginal savings.

TABLE II
DEPTH MAP COMPRESSION

Encoding File 1 Size File 2 Size Avg Compression Ratio
None 979.6 MB 206.5 MB 1
LZ4 189.4 MB 55.2 MB 4.4565

Table II shows the results of our depth map compression
using LZ4. The other substantial part of our savings comes
from compressing the depth map. In our tests, we achieved an
average compression ratio of 4.4565, which is comparable to
the FFmpeg encoder’s compression ratio. While this isn’t as
drastic as the savings of lossy image compression, one thing
to consider is that LZ4 is a lossless compression algorithm.
Although, other lossless compression algorithms can achieve
better compression ratios LZ4 is unique in that it has a
low compression and decompression time which is important
for being able to hit refresh rate targets. Further works can
investigate other compatible compression algorithms for more
saving or to support higher frame rates.

TABLE III
H.264 POINT CLOUD COMPRESSION SIZES

File File Size Compressed Size Compression Ratio
1 6399.9 MB 192.8 MB 33.1945
2 1435.3 MB 56.4 MB 25.4486

TABLE IV
FFMPEG POINT CLOUD COMPRESSION SIZES

File File Size Compressed Size Compression Ratio
1 6399.9 MB 333 MB 19.2189
2 1435.3 MB 100.8 MB 14.2391

Tables III and IV show our aggregate results when consid-
ering FFmpeg and H.264 for RGB image compression and
LZ4 for depth map compression, respectively. The original
file size is the size of just the original point cloud data from
the rosbag and the compressed size is the aggregate of data
needed to reconstruct the point cloud. Compression ratio is
calculated as before. This data shows that using a lossy RGB
encoder, specifically H.264, we were able to achieve a 25-33
compression ratio which is a substantial decrease in required
file size as a 6GB file now only required 192.8 MB. We
hypothesize that this could scale up with larger data files
providing even greater space efficiency. A lossless encoder



only achieves a 14-19 compression ratio which is much lower
than lossy compression. However, compared to the original
file size, there is still substantial space savings as a 6GB file
can be compressed into a 333 MB file.

VI. DISCUSSION

Our findings suggest that our method is a feasible approach
for the BWI lab to compress point cloud streams with a high
space efficiency. One major difference between our approach
and other state-of-the-art algorithms, is that ours records and
publishes the data in real-time. This allows for multiple differ-
ent uses. One example being where a point cloud is generated
by one sensor, and then quickly sent to a server for testing
or logging. This compression algorithm could be modified for
even greater gains by exploring other compression algorithms
for depth map data and more efficient lossless video encoders.
In addition, the affect of lossy RGB video may be minimal
for different projects although we were unable to confirm
whether or not this had any effect on the validity of the
generated point cloud for program testing. Further tests for
measuring artifacting could include Mean Square Error (MSE)
and other similar methods that are effective on RGB images.
An extension of this algorithm could include artifact mitigation
algorithms to ensure that a lossy encoding can be used for the
lab’s purposes.

VII. CONCLUSION

To improve the BWI Lab’s ability to use ROS sensor data,
we realized and implemented a method to compress point
cloud data. The compression algorithm splits a point cloud
into an RGB image and a depth map. The RGB images
were encoding into a viewable video file allowing for flexible
encoder types and better compression. The depth map was
compressed using the LZ4 frame format allowing for a fast
compress and decompress time in order to hit frame rate
targets while maintaining lossless compression. This data
was then synced and then composed in order to reconstruct
the original point cloud in a mostly lossless fashion. This
compression algorithm allowed point cloud data specifically to
be successfully compressed with compression ratios ranging
from 15-30 providing close to a 20 fold decrease in file size.

REFERENCES

[1] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and
A. Tabatabai, “An overview of ongoing point cloud compression stan-
dardization activities: video-based (v-pcc) and geometry-based (g-pcc),”
APSIPA Transactions on Signal and Information Processing, vol. 9, p.
e13, 2020.

[2] C. Tu, E. Takeuchi, A. Carballo, and K. Takeda, “Point cloud compression
for 3d lidar sensor using recurrent neural network with residual blocks,”
05 2019.

[3] C. Cao, M. Preda, and T. Zaharia, “Real-time decoding and ar playback
of the emerging mpeg video-based point cloud compression standard,” in
The 24th International Conference on 3D Web Technology, ser. Web3D
’19. New York, NY, USA: Association for Computing Machinery, 2019,
p. 1–9. [Online]. Available: https://doi.org/10.1145/3329714.3338130

[4] lz4, “lz4,” https://github.com/lz4/lz4, 2020.


